
ENERGYPLUS™

COPYRIGHT © 1996-2004 THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS AND THE REGENTS OF
THE UNIVERSITY OF CALIFORNIA THROUGH THE ERNESTO ORLANDO LAWRENCE BERKELEY NATIONAL
LABORATORY.
ALL RIGHTS RESERVED. NO PART OF THIS MATERIAL MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM
OR BY ANY MEANS WITHOUT THE PRIOR WRITTEN PERMISSION OF THE UNIVERSITY OF ILLINOIS OR THE
ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY.
ENERGYPLUS IS A TRADEMARK OF THE US DEPARTMENT OF ENERGY.

EnergyPlus Programming
Standard

Authors: Richard K. Strand, W. Fred Buhl,
Linda K. Lawrie

Date: April 1, 2004

TABLE OF CONTENTS

I

Introduction ...1

Reference Documents..2

Coding Standard...3

FORTRAN90/95.. 3

FORTRAN90 Code ... 3

F90/95 Language Features for Use in EnergyPlus 5

FORTRAN90/95 Compilers... 5

Naming Conventions... 6

Subroutine Naming Convention .. 6

Module and Source Code File Naming Convention 6

Variable Naming Convention .. 7

Program Variables .. 7

Variable Declarations and Usage.. 7

Units in EnergyPlus... 9

Table 1. Standard Units for EnergyPlus. .. 9

Variable Initializations ... 10

Module Structure and Interaction .. 10

Module Usage in EnergyPlus.. 10

Driver Subroutines .. 11

Environment Flags .. 11

User Data Interface Subroutines (Get routines)...................................... 11

Initialization Subroutine(s)... 11

Calculation Routines and Utility Subroutines and Functions................... 12

Update Routine(s) ... 12

Reporting Subroutine(s) .. 12

USE Statements in EnergyPlus .. 12

TABLE OF CONTENTS

II

Example of the EnergyPlus Module Structure .. 13

Generic Subroutines and Functions.. 13

Programming Style.. 13

Code Template.. 13

Notes on the EnergyPlus Code Template... 18

Good Coding Practices ... 18

Code Readability vs. Speed of Execution ... 19

Code Documentation .. 19

Source Code Comments... 19

Engineering Documentation.. 20

Software Development Procedures ...21

EnergyPlus development: step by step... 21

Testing ..23

Appendix A: Definitions and Notation...25

Appendix B: Development of the Standard..26

Why Standards?.. 26

What Standards? .. 27

Application of the Standard... 27

Metrics... 28

Complexity Metric.. 28

Table 2. McCabe Complexity Measurement .. 29

Lines of Code per routine ... 29

Appendix C: Evolutionary Reengineering ..30

Figure 1. The Evolutionary Reengineering Process............................... 31

Appendix D: EnergyPlus Variable Abbreviations..32

ENERGYPLUS PROGRAMMING STANDARD INTRODUCTION

4/1/04 1

Introduction

EnergyPlus is a building simulation program written in a modular fashion using the Fortran90
programming language. Most programs have progenitors: EnergyPlus is no exception. It is
built upon the DOE-2 and iBLAST building simulation programs. Both of these programs were
written in Fortran77 without any consistent style or structure. Consequently, both programs
had become difficult to understand, maintain and extend.

The EnergyPlus Programming Standard is intended to be a coding guideline for EnergyPlus
software developers. The rules and standards described in this document are intended to
impose a consistent structure and style on all code written for EnergyPlus. This consistency
should aid all present and future developers in understanding, maintaining, and adding to
EnergyPlus.

All FORTRAN90/95 code will be separated from text and formatted using the following
notation to distinguish it from other information:
SUBROUTINE ReportZoneConditions ! EnergyPlus Subroutine
INTEGER ZoneNum
DO ZoneNum=1,MaxNumZones

ENERGYPLUS PROGRAMMING STANDARD REFERENCE DOCUMENTS

4/1/04 2

Reference Documents

This document is one of a set of documents for the EnergyPlus developer. Other documents
in the set are:

Guide for Interface Developers: Everything you need to know about EnergyPlus Input and
Output (to develop a user-friendly interface)

The Interface Developer’s Guide will tell you all the information about using and
developing IDD (Input Data Dictionary) statements, Input Data File (IDF) statements,
EnergyPlus outputs, and essentials of running EnergyPlus.

Guide for Module Developers: Everything you need to know about EnergyPlus
Calculational Development (but were hesitant to ask)

The Module Developer’s Guide will tell you further about useful modules built into the
EnergyPlus code that will make getting items from the IDF for your simulation relatively
easy.

Engineering Document: The Reference to EnergyPlus Calculations (in case you want or
need to know)

The Engineering documentation gives details of the theory, equations and, occasionally,
code snippets behind the EnergyPlus features.

Input-Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output

Extensive details of the inputs used and outputs produced with EnergyPlus.

Output Details and Examples: An In-Depth Guide to EnergyPlus Output and Example Files

Extensive details output files and (future) examples files distributed with EnergyPlus.

Auxiliary EnergyPlus Programs: To Increase Your Efficiency at Using EnergyPlus

Guides for the Weather Converter program, HVAC Templates, WinEPDraw, VCompare,
and Transition (Convert old IDFs to later release version IDFs).

Getting Started: Everything You Need to Know about Running EnergyPlus (and a start at
building simulation)

A guide to running EnergyPlus and some of the auxiliary programs as well as an
introduction to building simulation modeling for those who might be new to the field or
new to the precepts of EnergyPlus.

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 3

Coding Standard

FORTRAN90/95

Due to the use of previous versions of FORTRAN in both DOE-2 and (I)BLAST legacy code
and because of its advanced modular structures, FORTRAN90/95 has been chosen as the
language of choice for EnergyPlus. All of the guidelines presented in this section (“Coding
Standard”) are based on the use of FORTRAN90/95 for all code in EnergyPlus. The
information in this section is not intended to be a complete description of the FORTRAN90
programming language but rather a supplement to the ANSI Standard. For those not familiar
with Fortran90, the following books have proved useful to the development team:

� Fortran 90 Programming, T.M.R. Ellis, Ivor R. Phillips, Thomas M. Lahey, Addison-

Wesley, 1994.

� Upgrading to Fortran 90, Cooper Redwine, Springer Verlag, 1995.

� Fortran 90/95 for Scientists and Engineers, Chapman, Steven, McGraw Hill, 1998.

However, there are many other Fortran 90/95 texts available. A useful book about software
design is:

� Code Complete: A Practical Handbook of Software Construction, Steve C McConnell,

Microsoft Press, 1993.

FORTRAN90 Code

For the EnergyPlus project, three types of code that may coexist in any version of the
program:
� Legacy Code

� Reengineered Code

� New Code
While these types of code will coexist in the EnergyPlus source, different expectations on the
relative “purity” of the code will be enforced. All legacy code that is included in EnergyPlus
must be at least F90 strict. (Note that legacy code included from another source may need
permission/granting clauses to be place in EnergyPlus – see the Module Developer’s Guide
for more on this). Mildly reengineered code (near legacy) that has not undergone any
algorithm changes (only inclusion in a module, renaming of variables, etc.) will be allowed as
long as it conforms to the F90 strict test. Reengineered code that has been modified
significantly and all new code will be required to conform to the F90/95 pure standard.

All code should be placed in “free-format” as opposed to the fixed format used by F77 and
other versions of FORTRAN. (Legacy code may be converted from fixed to free format using
a utility available from team members.) In addition, the following guidelines should be
followed for all free-formatted code in EnergyPlus:

� Only ! is valid for indicating comments.

� In-line comments are allowed and encouraged.
Guidelines from Code Complete should be followed for inline comments. Several
suggestions are repeated here:

� Avoid endline (inline) comments that merely repeat the code.

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 4

� Avoid endline comments for multiple lines of code. In other words, avoid using a
comment at the end of one line that applies to several lines of code.

� Use endline comments to annotate data declarations.

� Use endline comments for maintenance notes (bug fixes, for example).

� Use endline comments to mark ends of blocks.

� No lines should extend past 130 characters. (Absolute limit is 132 characters!)

� It is suggested for readability that most lines be confined to 80 characters. This allows
most code to be seen on a standard size screen and be printed without resorting to
micro-fonts or landscape mode.

� Column 6 is not associated with a continuation line in free format. To continue one line
onto the next line, place an ampersand (&) at the end of the line to be continued.

� The main program should begin with a PROGRAM statement.

� To help visually distinguish between F90 syntax and other code elements such as
comments and names, F90 syntax should be in all capital letters while other elements
should be mixed case.

� Tab characters are not allowed in any source code file. If the file editor allows tab
characters, be certain to set it up so that the tab characters are converted to spaces upon
saving the file.

� It is highly recommended that programmers not use generic loop counters such as i, j, k,
etc. This simply adds to the complexity of the code. The source code will be much
easier to read if programmers use logical names for loop counting such as SurfaceNum,
SystemNum, IterationNum, etc.

� Though the standard allows for multiple statements on a line, do not use these.
E.g. a=0; b=0
instead Î use:
a=0
b=0

� Likewise initialization statements can have multiples on a line, do not use these.
E.g. Integer, Save :: Var1=0, Var2=0
Instead use Î
Integer, Save :: Var1=0 ! should also have commenting on what var1 is
Integer, Save :: Var2=0 ! Var2 definition

� One F95 standard that is highly encouraged is the default initialization that can be done
for derived type elements. The following example illustrates this. When CompData type
is allocated (usually these are arrays), it is automatically filled with the indicated defaults.

TYPE CompData
 CHARACTER(len=MaxNameLength) :: TypeOf=' ' ! identifying component type
 CHARACTER(len=MaxNameLength) :: Name=' ' !Component name
 INTEGER :: CompNum=0 !component ID number
 CHARACTER(len=MaxNameLength) :: FlowCtrl=' ' !Component flow control
 ! (ACTIVE/PASSIVE/BYPASS)
 LOGICAL :: ON=.false. !When true, the
 ! designated component or operation scheme is available
 CHARACTER(len=MaxNameLength) :: NodeNameIn=' ' !Component inlet node
 ! name
 CHARACTER(len=MaxNameLength) :: NodeNameOut=' ' !Component outlet node
 ! name
 INTEGER :: NodeNumIn=0 !Component inlet node
 ! number
 INTEGER :: NodeNumOut=0 !Component outlet node

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 5

 ! number
 REAL :: MyLoad=0.0 !Distributed Load
 REAL :: MaxLoad=0.0 !Maximum load
 REAL :: MinLoad=0.0 !Minimum Load
 REAL :: OptLoad=0.0 !Optimal Load
END TYPE CompData

Other items of interest concerning syntax that is either allowed or disallowed in the various
types of code are listed below:

� EQUIVALENCE statements are not allowed in any code except legacy code. Since

EQUIVALENCE is a deprecated feature of F90, as many equivalence statements as
possible should be eliminated during the reengineering process. New code should not
use EQUIVALENCE statements.

� COMMON blocks and INCLUDE files are to be avoided and replaced during the
reengineering process by module level variables or data only modules (where allowed).
Commons and includes will be allowed in legacy and reengineered code until sufficient
reengineering has taken place in that section of code to make other methods of variable
declarations more appropriate. Commons and include files will not be allowed in new
code except where necessary for interfacing with legacy or mildly reengineered code.

� GOTO statements should be avoided in either reengineered or new code.

� Machine specific features of extensions to F90 should not be used in any code.

F90/95 Language Features for Use in EnergyPlus

There are numerous new features in F90 that will be advantageous for the EnergyPlus
project. The following program elements must be used for all reengineered and new code:

� Modules

� USE statements (allows interaction of modules)

The following F90 features should be considered for use with all reengineered and new code
in EnergyPlus:

� Derived types

� Variable intent

� Interface blocks

FORTRAN90/95 Compilers

EnergyPlus is being developed on PCs in Windows 98 and Windows NT. The primary
compiler being used is Compaq (formerly Digital) Visual Fortran (CVF), which operates within
Microsoft Developer Studio. Lahey F95 is being used in various tests and Intel’s Visual
Fortran is being evaluated. In CVF, the following compiler options are recommended. In the
“Project” menu click “Settings” and choose the following:

� Fortran > General > Generate source browser information

� Fortran > Miscellaneous > Undeclared Symbols, Uninitialized Variables, Uncalled
Routines

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 6

� Fortran > Optimizations > None or Local optimizations

� Fortran > Runtime > Array & String Bounds, Integer Overflow

� Fortran > Runtime > Generate Traceback Information (DVF6 and above)

� Fortran > Floating Point > Exception handling 0

� Link > General > Generate Debug Info, Link incrementally

� Link > Customize > Use program database

� Link > Debug > Debug info

� Browse Info > Build browse info file

IT SHOULD ALSO BE NOTED THAT SINCE TAB CHARACTERS ARE NOT ALLOWED IN ENERGYPLUS BUT ARE
VALID IN CVF THAT ALL DEVELOPERS SHOULD CONFIGURE IT TO REPLACE TABS WITH SPACES. THIS IS
ACCOMPLISHED BY SELECTING THE OPTIONS ITEM IN THE TOOLS MENU. AFTER CLICKING ON THE TABS
HEADING, CLICK ON INSERT SPACES FOR ALL THREE FILE TYPES. NOTE THAT THIS WILL INSERT SPACES INTO
THE FILE EVERY TIME YOU PRESS THE TAB KEY AFTER YOU HAVE SET THIS OPTION. IT WILL NOT CONVERT
ALREADY EXISTING TAB CHARACTERS IN THE FILE INTO SPACES. THAT MUST BE DONE MANUALLY OR WITH
THE HELP OF A TEXT EDITOR.

Naming Conventions

The naming conventions listed in the next several sections apply to reengineered and new
code. Legacy code that is brought over “as is” will not be required to undergo name changes
immediately. However, since it is anticipated that new and reengineered sections of code will
affect most remaining sections of legacy code, the renaming of variables in legacy code will
be necessary at some point. Thus, name changes that occur in legacy code should follow
these conventions even if they are not accompanied by any algorithm modifications.

In all of the naming conventions listed below, it is implicitly assumed that the limit on the
length of names is 31 characters and that spaces are not allowed as valid characters in any
of the names. Also, underscores (“_”) should be avoided.

Subroutine Naming Convention

Subroutine names should be constructed using the verb-predicate rule. Every subroutine
models an action on some item. Thus, the subroutine name should reflect this by including
both the action and the item upon which the action is taken. The verb should be the first part
of the name followed by the predicate. Below are some examples of the verb-predicate
notation:

� CorrectZoneAirTemp

� CalcZoneMassBalance

� SimAirLoops

� ReportFan

Notice that the first letter of each word is capitalized to make the name easier to read. In
general, the use of longer names for subroutine names rather than abbreviations is
encouraged because subroutine names will not appear often in the code. However,
abbreviations may be used if the subroutine name will be longer than the 31-character limit.

Module and Source Code File Naming Convention

Since modules typically are associated with objects or data groupings, the name which is
selected for a module should refer to the object or data grouping. For example, a module
that deals with pumps in the central plant should be called “PlantPumps”. Modules which

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 7

consist of only variable declarations (data-only module, see section on Variable Declarations)
should use a “Data” prefix for its name followed by a logical descriptive term or terms. An
example of a potential name for a data-only module is “DataGlobals”.

Since each file containing source code will consist of a single program module, source code
files should use the name of the module as the base name and a “.f90” as the file extension.
Thus, the examples listed in the preceding paragraph would be contained in the files
PlantPumps.f90 and DataGlobals.f90. It should be noted that there are some limits on file
names on certain machines. Consequently, it may be desirable to omit terms such as
“algorithm” or “model” from module names.

Variable Naming Convention

While 31 characters are the absolute limit on the length of variable names, programmers
should note that variable names tend to appear in the code much more often than subroutine
or module names. As a result, the use of extremely long variable names can become
burdensome for the programmer to enter and make the code more difficult to read since it
may cause program statements to be strung out over several lines. On the other hand, the
use of short, cryptic names makes it difficult to understand the code without extensive
documentation.

For variable names, logical abbreviations are thus encouraged. Typically, lengthy words
should be shortened to somewhere between three and five characters to make a logical yet
concise name for the various program variables. For example, the variable for the humidity
ratio of the air entering the cooling coil might be named “InletAirHumRat”. In addition, plurals
should not be used (i.e., use Zone instead of Zones, System instead of Systems, etc.) in
variable names.

A list of approved abbreviations for use in EnergyPlus programming may be found in
Appendix A. In some cases, words have not been abbreviated because they are five letters
long or shorter or a logical abbreviation could not be determined. As with all of the other
items found in this standard, developers should use their judgement on the implementation of
these abbreviations within programming code. When in doubt, it might be best not to use an
abbreviation in some cases.

It should be noted that an explicit order for items, modifiers, etc. cannot be defined using the
verb-predicate rule for the subroutine names. This, in part, is because some variables are
complicated with more than one noun (InletAirHumRat) or might have several modifiers
(NumSingleTempHeatCoolControls). One suggestion on the order that the abbreviations
might occur in the name is to give preference to the more important or higher level elements.
As always, the developer should use common sense in applying these guidelines to program
code.

Program Variables

Variable Declarations and Usage

One of the guiding philosophies for the variable handling in EnergyPlus is that variables are
only available and accessible where they are needed. This is one of the benefits of modules,
i.e., that information which is not needed by a particular routine can be hidden from it.
Limiting the scope of variables also makes the code easier to read, maintain, and test.
Another goal of this standard is to minimize the amount of information that must be
transferred from one routine to another via a passed variable list and to eliminate the need for
commons. In order to ensure that this goal is realized, several restrictions on the availability
of variables must be observed.

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 8

It should be noted that all EnergyPlus subroutines and functions declare “IMPLICIT NONE”
near the beginning of each routine or function. Consequently, all variables must be declared
using valid F90 syntax. In F90, programmer has the ability to define certain variables as
either private or public. This specification has implications on the availability of a particular
variable outside of that module. Only four methods of variable definition should be allowed in
EnergyPlus:

1) Subroutine Level Variables. The first method of defining a variable is at the subroutine

level as private. This definition is consistent with the F77 local variable. Subroutine level
variables are not available anywhere outside the subroutine in which they are declared.
Thus, by definition, any variable declared at the subroutine level is “private”. Local
subroutine variables should be the first choice for the method of declaration.

2) Module Level Variables — Private. An alternative for defining a variable is private at the
module level. Variables defined in this way are available to all of the subroutines in the
module but to no routines outside the module or other modules. This definition is closely
related to the use of common blocks in F77 code except that related data has now been
grouped into a particular section of the code. Declaring a variable as private at the
module level avoids the need to pass the variable from one subroutine to another within
the same module. It should be noted, however, that it is inadvisable to declare loop
counters or any other variable that could be declared as a subroutine local variable as
module level variables. While it may seem redundant to declare a variable in several
subroutines, experience has shown that such an abuse of module level variables is poor
programming and will inevitably lead to program bugs.

3) Data Only Module — Public (Superblock). In most cases, the prudent selection of
module routines will result in the need for only subroutine level and private module-level
variables. However, there will be some circumstances involving either legacy code or
complex new code where the variables will need to be accessible in several related
modules. Such related modules are considered a superblock. Variables that are used in
several related modules should be separated and defined in a module that only includes
public variable declarations. Defining module level variables as “public” should only be
done when variables must be shared in a significant number of modules in a superblock.
For example, material properties are used in several parts of the heat balance code that
may be broken up into separate modules. Elevating variables to public status in data only
modules should be a rare exception to the previous two rules and should be done with
caution. Variables declared as public should only be used within modules that are
considered part of their superblock (e.g., waste heat should not be used in the heat
balance). Note that variables in modules that have subroutines should not be defined as
public.

4) Data Only Module — Public (Global). As in almost any other significant program,
EnergyPlus will have certain variables that will be utilized in every module in the code.
When several superblocks require access to a variable, it must be elevated to “global”
status. As a rule, there should be very few global variables, and elevating a variable to
global status should only be used as a last resort. Variables which may end up being
global variables include: physical and geometric constants such as π, environment
information variables (described in a later section) such as time, date, hour, time step,
etc., and file unit numbers.

Another issue related to variable declaration that has been addressed by this standard is the
static vs. dynamic storage of local subroutine variables. Due to the large number of legacy
code variables that may become part of the EnergyPlus program, it was necessary to specify
the static storage of variables as a compiler flag. Variables in new and reengineered code
should take advantage of dynamic allocation when possible and be explicit about its need to
save variable values between subroutine calls.

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 9

Two features of F90/95 that this standard encourages the use of but does not mandate are
intent and derived types. Intent allows the programmer to declare how a passed variable will
be used within a subroutine: as in input, an output, or both. The use of intent is another issue
of the clarity of variable usage. With the intent of a variable explicitly defined, bugs in the
program will show up much earlier in the development process and will be easier to detect
and eliminate.

Derived types offer a convenient way to group and, if necessary, pass related variables.
They are a method for constructing custom data structures within a program. For example,
all of the information about a cooling coil could be defined as derived type. Consult any F90
book on the merit, advantages, and applications of derived types. While derived types can
be nested (one derived type becomes part of another, etc.), no derived type used with
EnergyPlus should be nested more than three layers deep.

One feature of F77 that will be phased out during the process of reengineering the legacy
code is the use of common blocks (and the include files which contain them). While
common blocks are allowed in legacy code, their use in reengineered and new code will be
limited to any temporary scaffolding that is needed to mesh between the old data system and
the improved structure as outlined in this document.

Units in EnergyPlus

Since the scope of EnergyPlus is limited to building energy analysis and does not include
pre- or post-processing interfaces, EnergyPlus will expect information in a single unit system
(SI). Thus, interface developers will be required to convert user inputs from those preferred
by architects and engineers into the standard metric units of EnergyPlus. Thus, EnergyPlus
will not perform any units conversions and will not have any unit conversion routines.
Standard internal as well as program input and output units are as follows:

Table 1. Standard Units for EnergyPlus.

Variable Type Units
Area m2

Conductivity W/m-K
Density kg/m3
Energy J

Enthalpy J/kg
Heat Content (Fuels) J/kg

Length m
Mass Flow kg/s

Mass kg
Power W

Pressure Pa
R-Value m2-K/W

Specific Heat J/kg-K
Speed m/s

Temperature C
Delta Temperature C

U-Value W/ m2-K
Volume m3

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 10

Volume Flow m3/s

Unless otherwise noted in program comments or in the output file description, all units will
conform to the above list.

Variable Initializations

Consistency in variable initialization has been a concern in most of the legacy code for quite
some time. The problem existed because the methods of initialization were used
interchangeably for different types of initialization. Consequently, attempts to do parametric
runs were limited to separate program launches rather than control of parametric cases within
the program.

Several types of initializations might occur in a program:

1) Variable is set to some value and never changes throughout the rest of the program.

These variables should be defined as a parameter when they are declared regardless of
whether the variable is a subroutine variable, a module level variable, or a data-only
module variable.

2) Variable is set to some value defined by the user and never changes during the run.
These variables should be set in the “Get” routines based on the values read in from the
user input file.

3) Variable is set to some initial value and then gets updated one or more times during the
run. In F90, the developer has the opportunity to initialize a variable as part of its
declaration statement. This method is preferred over the data statement because a data
statement must be placed somewhere in the code, i.e. in a routine. Code that is much
easier to read will result if these variables are initialized at declaration.

4) Variable is reset periodically during the simulation or would need to be reset during
subsequent cases of a parametric run. These variables must be reset within defined
initialization subroutines as described in the initialization information provided in the next
section, Module Structure and Interaction.

Notice that block data statements are not used for any of the initializations -- they are
deprecated features. Using the definitions and methods described above, there is no longer
any need for the confusing block data statements.

Module Structure and Interaction

Module Usage in EnergyPlus

The module is the building block of the EnergyPlus program code. Modules are many times
used to bring together either related algorithms or related data. In EnergyPlus, modules are
used for grouping both data and algorithms because in many cases they are linked together.
The EnergyPlus Module Structure has four important goals:

� to promote uniformity of program code

� to simplify the process of adding additional modules to the code

� to enhance the testing capability of various program elements

� to replace the extremely confusing data structure with a more understandable,
segmented data structure as defined in the previous section.

Modules appear to be most consistently organized when a map of the various modules and
their interaction form an inverted tree or pyramid shape. EnergyPlus uses a modified form of
this tree structure in that one main driver module accesses the heat balance module. In turn,
the heat balance module interacts with the main system module through the heat balance-

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 11

system “interface”. In a like manner, the major blocks of the HVAC code also interact through
defined “interfaces”. Each of these main program elements access routines and data
contained in other related modules.

The transformation of the code from a distributed program environment into discrete modules
requires careful planning. The next several sections outline the potential elements of each
module. This information should serve as a guide to constructing a module either from new
or legacy code. Again, programmers should remember to take both data structure and
algorithmic considerations into account when constructing a module for EnergyPlus.

Driver Subroutines

Driver routines are subroutines contained within a module that are called from subroutines in
other modules. Access to the module and its data elements are only allowed through the
driver routines. These routines would be the only PUBLIC routines in the module (with the
possible exception of some of the input routines) since they are accessed from outside of the
module. All other routines in this module are accessed from these main driver routines.

The main driver subroutines may contain any programming necessary to model the
component or element on a macroscopic level. Other details of the algorithm should be
contained in one of the subroutine types described below. Therefore, the driver routines will
in most cases be a list of subroutine calls and possibly some control logic. For convenience,
the programmer may specify a sub-driver routine for each of the main subroutine sections
described below to minimize the number of calls that appear in the main driver routine.

Environment Flags

One set of variables that are candidates for elevation to “GLOBAL” status is the environment
flags. The environment flags serve to keep track of time during the simulation. There are
environment variables for hour, time step, sub-time step, day, etc. In addition, there are flags
which are set to tell whether the current moment in the simulation is the beginning of a
particular time frame (time step, hour, day, etc.) or at the end of the time frame. This
information is extremely important to the driver subroutine that controls the simulation of the
component module.

Based on the values of the environment flags, the driver will decide what types of
initializations are required, whether input data must be read, the record keeping that must be
done, and if reporting is necessary. In other words, the environment variables help the driver
control all of the actions taken on the local and module variables except actual changes
required by the model algorithms.

User Data Interface Subroutines (Get routines)

Most, if not all, modules require some input from the user such as design values, locations,
schedules, etc. Consequently, these modules must have subroutines that interface with the
user data. These routines are called from the driver routine(s) of this module or possibly from
an input reading driver routine. It is also conceivable that this section might include some
standard file operations such as “new”, “open”, “save”, “save as”, etc. that would relate to the
external storage of input data for this module. In short, these routines are responsible only
for transferring information from the user-input file to the particular variables.

Initialization Subroutine(s)

All routines that perform any required manipulations on the user data to obtain simulation
ready information are considered initialization subroutines. The routines in this section may
include several routines that are called from the driver subroutines within this module based
on the value of the global environment (status) flags. For example, at the beginning of the
simulation, one subroutine may be called to set up information that will be valid throughout
the simulation such as processing of coil design data into a simulation-ready format. There

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 12

may also be monthly, daily, hour, and time step level initializations that must be performed.
Each of these levels could have a separate subroutine in this section dedicated to such
initializations. Generally, though, it is preferred that all initializations be performed in one “Init”
routine.

Calculation Routines and Utility Subroutines and Functions

This section includes any calculations that are required to simulate the element represented
by this module. Thus, most of the details of the algorithm will be contained in this section.
There should be one “Calc” routine and as many utility routines as are needed. Generally, no
data movement will take place in the calculation section of the module.

Update Routine(s)

This section normally consists of one routine that performs any data transfer or movement
that is needed within EnergyPlus, after the actual calculation in the module has taken place.

Reporting Subroutine(s)

Usually there is one reporting routine for each module. This routine will do any calculation
that is needed strictly for output or reporting purposes and will contain the calls to the
EnergyPlus reporting routines.

USE Statements in EnergyPlus

Once the various modules have been constructed, the “blocks” of the “pyramid” must be
assembled using the F90 “USE” statements. The USE statement allows access from one
module to another. For example, in EnergyPlus, since the ManageSimulation subroutine
calls the ManageHeatBalance subroutine, it must have access to the HeatBalanceModule.
Thus, the ManageSimulation subroutine or the SimulationManager module must have a USE
HeatBalanceModule statement in it to allow this access. The USE statement also allows
access to the data-only modules.

One question that arises through the implementation of USE statements is: “Where does the
USE statement belong—at the module level or the subroutine level?” At this point, a definite
rule has not been established to answer this question. However, the following guidelines
seem reasonable and appropriate to the goals of this programming standard:

� USE statements that are required for access to a subroutine that is in another module

probably belong at the subroutine level. In the example above, if the call to
ManageHeatBalance is the only access to HeatBalanceModule from within the
SimulationManager module, then the USE statement should probably reside at the
subroutine level (in subroutine ManageSimulation in this case).

� If there are numerous calls from various subroutines in one module to another module,
then the programmer may wish to elevate the USE statement to the module level for the
sake of convenience. The number of calls threshold is left to the discretion of the
programmer.

� Due to the definition of “global” data (i.e., global data should be available everywhere),
any USE statements which are included for access to the global data (DataGlobals) must
be placed at the module level.

� USE statements for access to “super-block” data-only modules can be placed at either
the subroutine or the module level though it is recommended that these USE statements
reside at the module level. If data is only used in a single subroutine, the programmer
may need to consider passing the data as subroutine arguments.

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 13

Example of the EnergyPlus Module Structure

The code listed in the Module Developer’s Guide is intended to give the reader a good
example of how to implement the module described in the previous sections.

Generic Subroutines and Functions

There is a good possibility that the EnergyPlus code may contain some “generic”
mathematical functions or procedures that are used by several, disparate sections of the
program. Rather than repeat this code in each module that it is required, it might be
appropriate to construct a generic subroutine/function module. Then, subroutines that need
that function can use this generic module. Some examples of processes that might be
included in a generic procedure module include array-zeroing subroutines, special functions
not included in the F90 standard, etc. Developers should note that F90 does include a
variety of matrix manipulation intrinsic functions. These standard functions should be used
unless there are special conditions that require more specific programming. Subroutines or
functions that are only called from a single module should be included in the utilities section
of that module. Finally, subroutines or functions added to this generic process module should
be written in the most general terms so that any routine which must call into this module will
be able to do this without the assistance of extra programming or the definition of a new
routine.

Several routines, such as “GetNumObject” or other “Get” routines as well as Psychrometric
functions have already been defined for the EnergyPlus Developer. To find out more about
these, refer to the Module Developer’s Guide.

Programming Style

Some of the issues related to programming style have already been discussed in the
FORTRAN90/95 Code section above and will not be repeated here. In order to complete the
discussion of style within program code, it is necessary to step back and review the goals of
the project. Members of the project team determined that two of the most important features
for the EnergyPlus code were maintainability and understandability. The key to achieving
these characteristics is to use uniform, simple code for as much programming as possible.
Algorithm tasks should be well defined and documented.

The next section contains a code template that is to be used with all EnergyPlus modules.
This template will help promote uniformity between various sections of the EnergyPlus code.

Code Template

MODULE <module_name>

 ! Module containing the routines dealing with the <module_name>

 ! MODULE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS MODULE:
 ! Needs description

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES: none

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 14

 ! OTHER NOTES: none

 ! USE STATEMENTS:
 ! Use statements for data only modules
USE DataGlobals, ONLY: ShowWarningError, ShowSevereError, ShowFatalError, &
 MaxNameLength, ...

 ! Use statements for access to subroutines in other modules

IMPLICIT NONE ! Enforce explicit typing of all variables

PRIVATE ! Everything private unless explicitly made public

 ! MODULE PARAMETER DEFINITIONS
 ! na

 ! DERIVED TYPE DEFINITIONS

 ! MODULE VARIABLE DECLARATIONS:

 ! SUBROUTINE SPECIFICATIONS FOR MODULE <module_name>

 ! Name Public routines, optionally name Private routines within this module

PUBLIC Sim<module_name>
PRIVATE Get<module_name>
PRIVATE Calc<module_name>
PRIVATE Update<module_name>
PRIVATE Report<module_name>

CONTAINS

SUBROUTINE Sim<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 15

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 LOGICAL,SAVE :: GetInputFlag = .true. ! First time, input is "gotten"

 IF (GetInputFlag) THEN
 CALL Get<module_name>Input
 GetInputFlag=.false.
 ENDIF

 <... insert any necessary code here>

 CALL Init<module_name>(Args)

 CALL Calc<module_name>(Args)

 CALL Update<module_name>(Args)

 CALL Report<module_name>(Args)

 RETURN

END SUBROUTINE Sim<module_name>

SUBROUTINE Get<module_name>Input

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: GetNumObjectsFound, GetObjectItem ! might also use
FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 INTEGER :: Item ! Item to be "gotten"

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 16

 CHARACTER(len=MaxNameLength), &
 DIMENSION(x) :: Alphas ! Alpha items for object
 REAL, DIMENSION(y) :: Numbers ! Numeric items for object
 INTEGER :: NumAlphas ! Number of Alphas for each
GetObjectItem call
 INTEGER :: NumNumbers ! Number of Numbers for each
GetObjectItem call
 INTEGER :: IOStatus ! Used in GetObjectItem
 LOGICAL :: ErrorsFound=.false. ! Set to true if errors in
input, fatal at end of routine

 <NumItems>=GetNumObjectsFound('object for <module_name>')
 DO Item=1,<NumItems>
 CALL GetObjectItem('object for
<module_name>',Item,Alphas,NumAlphas,Numbers,NumNumbers,IOStatus)
 <process, noting errors>
 ENDDO

 <SetupOutputVariables here...>

 IF (ErrorsFound) THEN
 CALL ShowFatalError('Get<module_name>Input: Errors found in input')
 ENDIF

 RETURN

END SUBROUTINE Get<module_name>Input

SUBROUTINE Calc<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 17

 ! na

 RETURN

END SUBROUTINE Calc<module_name>

SUBROUTINE Update<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END SUBROUTINE Update<module_name>

SUBROUTINE Report<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 18

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 < this routine is typically needed only for those cases where you must transform the
internal data to a reportable form>

 RETURN

END SUBROUTINE Report<module_name>

END MODULE <module_name>

Notes on the EnergyPlus Code Template

Programmers should copy the above text into an empty file, changing names and filling in
comments and code as appropriate. Comments in the template that are enclosed in {{double
braces}} should be replaced with actual comments specific to the module or subroutine.
Comments that are enclosed in <<double hinges>> should be replaced with program code.
Other comments should be left in the file as they are. Note that some of the comments
appear in all capital letters while others appear in mixed case. These all capitalized
comments are special “header” comments. Developer comments should be in sentence case
rather than all upper case. All comments (including in-line comments) should begin in the
11th column or later to help set them off visually from the code. In-line comments should
leave at least one blank character between the end of the syntax and the comment marker.
Furthermore, it should be noted that the indentation of program code did not begin until the
subroutine level had been reached. Finally, functions may be added in a similar manner as
the subroutines.

Good Coding Practices

Though we hope that the interfaces to EnergyPlus will produce correct input files, this may
not be the case. Therefore, you should program defensively when accepted incorrect data
will cause your routines to go “belly-up”. For example, the “ShowFatalError” routine is called
in the code example (Ref: Module Developer’s Guide) when the “SimulateFanComponents” is
passed a fan name that it cannot find in the list of fans. Ideally, this kind of error-checking
should be accomplished during the “Get” routines for the module. Nevertheless, having this
detection somewhere (anywhere) will save countless hours of debugging an incorrect input
file.

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 19

Code Readability vs. Speed of Execution

Programmers throughout time have had to deal with speed of code execution and it’s an
ongoing concern. However, compilers are pretty smart these days and, often, can produce
speedier code for the hardware platform than the programmer can when he or she uses
“speed up” tips. The EnergyPlus development team would rather the code be more
“readable” to all than to try to outwit the compilers for every platform. First and foremost, the
code is the true document of what EnergyPlus does – other documents will try to explain
algorithms and such but must really take a back seat to the code itself.

However, many people may read the code – as developers, we should try to make it as
readable at first glance as possible. For a true example from the code and a general
indication of preferred style, take the case of the zone temperature update equation. In the
engineering document, the form is recognizable and usual:

2 3
inf supply

1 1 1

inf
1 1

3 1
3

2 3
11
6

surfacessl zones

surfaces zones

NN N
t t t t t tz

i i i si i p zi p sys p z z z
t i i i

z N N
z

i i p p sys
i i

C
Q h AT m C T m C T m C T T T T

tT
C

h A m C m C m C
t

δ δ δ

δ

δ

− − −
∞

= = =

= =

+ + + + − − + −
=

+ + + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑
And, this equation appears in the code (ZoneTempPredictorCorrector Module), as:

ZT(ZoneNum)= (CoefSumhat + CoefAirrat*(3.0*ZTM1(ZoneNum) - (3.0/2.0)*ZTM2(ZoneNum) &
 + (1./3.)* ZTM3(ZoneNum))) &
 / ((11.0/6.0)*CoefAirrat+CoefSumha)

somewhat abbreviated here due to lack of page width but still recognizable from the original.
A better version would actually be:

ZT(ZoneNum)= (CoefSumhat - CoefAirrat*(-3.0*ZTM1(ZoneNum) + (3.0/2.0)*ZTM2(ZoneNum) &
 - (1./3.)* ZTM3(ZoneNum))) &
 / ((11.0/6.0)*CoefAirrat+CoefSumha)

whereas the natural tendency of programming would lead to the less readable:
ZT(ZoneNum)= (CoefSumhat + CoefAirrat*(3.0*ZTM1(ZoneNum) – 1.5*ZTM2(ZoneNum) + .333333* ZTM3(ZoneNum))) &
 / (1.83333*CoefAirrat+CoefSumha)

The final version is a correct translation (more or less) from the Engineering/usual
representation but much harder to look at in code and realize what is being represented.

This discussion also appears in the Module Developer’s Guide.

Code Documentation

In addition to a uniform programming style, proper code documentation will enhance the
understandability and maintainability of EnergyPlus. Code documentation includes the
comments within the source code as well as written documents. Neither documentation type
is intended to be a program tutorial or textbook in building energy analysis physics. Code
developers should assume that readers of the documentation will be familiar with standard
engineering terminology and have a basic understanding of the processes involved. In cases
where extremely complex algorithms are involved, developers should provide as many
detailed comments as possible but refer the reader to an appropriate text or article. It should
be noted that program code will not be considered complete until the proper documentation
for that section of the program is complete.

Source Code Comments

Source code comments include the information sections contained in the code template in
the previous section as well as any additional in-line comments. Again, the object is not to
document obvious lines of code but to assist the reader in understanding the code. For
example, an in-line comment for an assignment statement probably should not repeat the
equation being described because in most cases it will be obvious what is being calculated
due to the use of longer variable names. If there are several similarly named variables in an

ENERGYPLUS PROGRAMMING STANDARD CODING STANDARD

4/1/04 20

equation, it may be necessary to explain the differences between them. In most cases, if the
equation is unique to a particular method, then a citation to one of the references should be
given (e.g., Heat Conduction in Solids, Carslaw and Jaeger, p. 123, Equation 2.1.5). If a
particular algorithm with distinct steps or milestones is used, the addition of such information
to the code using in-line comments can be very effective. Do-loops and If-then constructs
should have comments that enhance the description of the loop or decision being made.

Engineering Documentation

The written documentation for each module should include user documentation, interface
developer documentation, and engineering or technical documentation. The user
documentation should incorporate basic facts about how the model can be used in the
program and some information on the limits of its application within the program. This
information should be tailored to someone who will use the program as a “black box”. These
users are not concerned with the calculation procedures used by EnergyPlus but are
concerned with how to get reasonable results out of the program. The interface developer
documentation should provide a detailed description of what input is necessary for the model.
Generally, this can be in the form of comments in the Data Dictionary (IDD) file. The module
developer should make sure that important information such as input units is part of this
documentation section. Finally, the technical documentation should include more detailed
information on the processes being programmed. This information should be similar to the
documentation found in the program code and should be written with code developers in
mind. As with the in-source documentation, the program developer should avoid lengthy
discussion of minute details that are already discussed in reference documents. However,
information important to the calculation procedure or any numerical techniques that are used
should be highlighted.

ENERGYPLUS PROGRAMMING STANDARD SOFTWARE DEVELOPMENT PROCEDURES

4/1/04 21

Software Development Procedures

The EnergyPlus software development philosophy is to proceed incrementally, always
maintaining a working version of EnergyPlus. Large, dramatic development steps that break
the code are not encouraged. This philosophy grew out of the fact that a large portion of
EnergyPlus – the heat balance section – is based upon legacy code from iBLAST. This code,
in common with most of the code in DOE-2 and BLAST, is written in Fortran77 and tends to
be disorganized and difficult to understand. Rather than rewrite this code in one step it was
decided to begin with the legacy code and transform it gradually into modular, structured
Fortran90 code. This procedure allowed the correctness of the code to be verified at each
stage of the transformation and allowed other development to proceed in parallel. This
method of gradually transforming legacy code into modern, structured code was dubbed
“evolutionary reengineering”; a more detailed description is in Appendix C.

The experience with evolutionary reengineering led to the existing development philosophy:
proceed in modest development steps; maintain working code; test frequently and always
test at the end of each development step. A more detailed description of the software
development steps is provided below.

EnergyPlus development: step by step

Understanding the general philosophy of EnergyPlus development is important, but it does
not guarantee that the code produced by the developer twill meet the goals of the project. In
order to increase the probability of success, individual developers in conjunction with other
team members should use the following detailed software development plan. The intention of
this section is not to enforce bureaucracy on the team members but to provide the developers
with methods for handling difficult situations and resolving issues related to other sections of
the code.

The following phases will help guide programmers through the development process. It may
not be necessary or possible to follow all of these steps for each coding task in EnergyPlus.
However, developers should consider these steps to help guide them through complex
additions to the program.

1) Problem/Enhancement Definition. A sub-task in the EnergyPlus development is

identified. This can be done formally during a meeting during the discussion of
programming topics or it can be done informally when a problem is recognized in a
portion of the EnergyPlus code.

2) Team Assembly. Once the project has been defined, primary responsibility for
completion of the task must be assigned to one of the members of the development
team. In addition, the primary developer will assemble an assisting team of two other
developers to provide project support. One of these assistants should be a developer
who has projects that may be interrelated. For example, a coil project should include a
central plant expert as an assistant. The other assistant can be selected from any of the
remaining development personnel. The assisting team will provide support for the
primary developer and will be responsible for checking that all of the software
development procedures have been followed.

3) Planning Stage. The primary developer will make a preliminary investigation and create
a plan for all aspects of the development task. This phase will include tracking down any
references necessary to complete the project and gather (and becoming familiar with)
any legacy code which is available. It is expected that the primary developer will define
the inputs and outputs of the new model (variables and also file input/output issues)
during this phase, summarize any record keeping which might be needed, and determine

ENERGYPLUS PROGRAMMING STANDARD SOFTWARE DEVELOPMENT PROCEDURES

4/1/04 22

how the module will interact with surrounding programming components. The documents
required by this phase may consist of either written or (preferably) electronic documents.

4) Preliminary Review. The primary developer will present the plan to the assisting team.
During the preliminary review, it is more important for the assistant who is working on
interrelated projects to be available, but both assistants should attend this meeting if
possible. During the presentation, the team should discuss and remedy any potential
problems with the plan. If any serious problems are discovered, the primary developer
should request that the plan be re-reviewed later.

5) Initial Programming and Documentation Phase. The primary developer will begin by
constructing a skeleton of the new module and programming the interactions with the
other modules. The programmer should not yet begin work on the detailed calculations
of the module. The resulting skeleton should include all of the comments required by the
code template presented in an earlier section. In addition, the primary developer should
prepare a draft of the engineering documents.

6) Initial Code Review. The primary developer will present the results of the preceding
phase to the assisting team. They will check to make sure that the developer has stuck
to the preliminary plan or can provide justification for changing the plan. Furthermore,
they will comment on the draft engineering documents and suggest structure or content
changes/additions. Again, if serious problems are uncovered during this review, it may
be necessary to return to previous stages of the development process.

7) Detailed Programming and Documentation Phase. At this point, the primary developer
should incorporate the details of the module including any calculations, input/output
issues, record keeping, etc. that are necessary. During this phase, the programmer
should also complete program documentation and construct a testing plan as the various
portions of the module are developed. Documentation tasks include completing in-line
comments in the source code and filling in the details of the engineering and interface
developers documentation. The testing plan should address both unit testing (ranges of
parameters to investigate, etc.) and interaction testing.

8) Code Review Phase. The assisting team should perform a code walkthrough with the
primary developer to insure that the code will perform the desired tasks and conforms to
the established EnergyPlus standard. Additionally, the team will discuss and revise, if
necessary, the documentation changes and testing plan. Concerns about coding,
documentation, or testing strategies should be addressed at this point before continuing
with the testing plan.

9) Testing Phase. The primary developer proceeds with the testing plan documenting the
results of the testing plan and modifying the code as needed. The user documentation is
also completed during this phase.

10) Testing and Documentation Review. One or both of the assisting team members review
the testing results and resultant documentation changes. Suggestions for further testing
or changes are made, if necessary.

11) Project Completion Phase. After successful completion of the testing and documentation
review, the primary developer is responsible for using the version control system to
integrate the changes for this project into the current version of EnergyPlus, final testing
of the new version of EnergyPlus to insure that the integration was successful, and
integration of the various model documents into the EnergyPlus documentation
repository. Any problems encountered during this phase should be brought to the
attention of the assisting team members and/or the system administrator. Upon
completion of these tasks, the primary developer notifies one of the assisting team
members that the project is complete.

12) Final Review. The notified assisting member confirms that the code and documentation
has been integrated properly and that the integration of the code into EnergyPlus has not
introduced any errors into EnergyPlus or the new module.

ENERGYPLUS PROGRAMMING STANDARD TESTING

4/1/04 23

Testing

This section describes testing that is done by the developer; testing for program releases is
described in a separate document.

The kind of testing that will be done by a developer is somewhat dependent on the type of
development project undertaken and thus will always rely to some extent on the developer’s
good judgement. A straightforward case to discuss is the development of a new HVAC
component module. The development and testing might proceed in the following stages.

� Specify the input with a Data Dictionary (IDD) entry. The new IDD can be tested for

syntactical correctness by simply running one of the EnergyPlus test suite inputs using
the new IDD.

� Design the module data structure and write the input (Get) subroutine. Create test input
for the component and add it to an existing EnergyPlus input (IDF) file. Test that the input
data is being correctly read by the input subroutine and stored correctly in the module
data structures. This testing will be done in the debugger.

� Write the rest of the component module code and test it in a standalone fashion. This
allows for rapid, repetitive testing that covers the range of possible component inputs.
These tests will also be done in the debugger.

� Create a full EnergyPlus input incorporating the new component in a realistic manner.

� Add the new EnergyPlus module to the full program. Using the debugger test that the
new, full input is functioning correctly

� Using the EnergyPlus reporting capabilities and a spreadsheet, test that the new
component is functioning as expected in a variety of conditions.

� Run the EnergyPlus test suite and make sure nothing has changed when the new
component is not part of the input.

� Add one or more new test files to the EnergyPlus test suite. These are really examples
to the user for EnergyPlus Features.

� Document the test files using the documentation template (see below) as your guide.

� Perform full annual runs on the test files that you will add as example files.

ENERGYPLUS PROGRAMMING STANDARD TESTING

4/1/04 24

! <name of file>
! Basic file description: <specify number of zones, stories in building, etc>
! Highlights: <Purpose of this example file>
! Simulation Location/Run: <location information, design days, run periods>
! Building: <more details about building. metric units, if also english enclose in []{} or ()>
!
! Internal gains description: <lighting level, equipment, number of occupants, infiltration, daylighting,
etc>
!
! HVAC: <HVAC description and plant supply, as appropriate>

Some good examples (not necessarily meeting all the above):

! 5ZoneAutoDXVAV.idf
! Basic file description: 1 story building divided into 4 exterior and
! one interior conditioned zones and a return plenum.
! Building: single floor rectangular building 100 ft x 50 ft. 5 zones -
! 4 exterior, 1 interior, zone height 8 feet. Exterior zone
! depth is 12 feet. There is a 2 foot high return plenum: the
! overall building height is 10 feet. There are windows on
! all 4 facades; the south and north facades have glass doors.
! The south facing glass is shaded by overhangs. The walls
! are woodshingle over plywood, R11 insulation, and gypboard.
! The roof is a gravel built up roof with R-3 mineral board
! insulation and plywood sheathing. The floor slab is 4 inches
! of heavy concrete over 2 feet of dirt. The windows are double
! pane 6mm clear with 6mm air gap. The window to wall ratio is
! approxomately 0.29.
!
! The building is oriented 30 degrees east of north.
!
! Internal: lighting is 1.5 watts/ft2, office equip is 1.0 watts/ft2. There
! is 1 occupant per 100 ft2 of floor area. The infiltration is
! 0.25 air changes per hour.
!
! HVAC: the system is a packaged VAV (DX cooling coil and gas heating coils).
! the input is fully autosized.

! CoolingTower.idf
! Basic file description: This is a modification of the electric chiller test file
! with 2 single-speed cooling towers in series, UA = 175 for
! each tower.
! Shirey/Raustad, 2/9/01
!
! Chiller Names Type Condenser Capacity

! Big Chiller Electric Water Cooled 100,000
! Little Chiller Electric Water Cooled 20,000

! Run: 2 design days.
! Building: Fictional 3 zone building with interzone partitions connecting all zones together.
! No ground contact (all floors are "partitions"). Roofs exposed to outdoor environment.
! There is one single pane window.
! Internal: People, equipment, and lighting all at approximately "normal" levels and schedules.
! System: 3 zone terminal reheat system using a single air loop. Controlled about like the old
! BLAST "NWS2" control profile. Heating up to 20 C during occupied hours, 15 C otherwise.
! Cooling to 24 C while occupied, 30 C otherwise. Fans and coils scheduled to be unavailable
! during unoccupied hours. Cooling coil off all winter. Reheat coil on all year.
! System configuration is very basic--air loop has a fan and cooling coil, each zone leg has
! nothing more than a reheat coil.
! Plant: Heating loop served by purchased heating. Cooling loop served by two different types of
! chillers and purchased cooling. Priority based controls determine which piece of equipment
! tries to meet the load.
! SolDis=FullInteriorAndExterior, Aniso, Detailed Interior and Exterior Convection <== Should be in
highlights.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX A: DEFINITIONS AND NOTATION

4/1/04 25

Appendix A: Definitions and Notation

The following definitions will be applicable for this document:

� EnergyPlus — The name of the program chosen by team members to represent the best

pieces of the DOE-2 and (I)BLAST programs. EnergyPlus as defined by the team
members is only responsible for performing building energy analysis. It will not serve
either as a user interface or as an output processor. This will have some bearing on the
topics detailed in this standard.

� Legacy Code — Program code from (I)BLAST and DOE-2 which will not be revised (no
algorithm changes) for reasons of time constraints, testing considerations, etc.

� Reverse Engineering — The process of determining the data flow and algorithms used
for various program codes.

� Reengineered Code — Code which has been reverse engineered and then modified to fit
the proposed guidelines agreed upon by the team members. The starting point for
reengineered code is code from either (I)BLAST or DOE-2.

� New Code — Code which has been written from scratch, i.e., completely new code.

� Superblock — A grouping of modules with a common purpose. All of the heat balance
modules would be considered part of the heat balance superblock; system modules
would be part of a system superblock, etc.

� FORTRAN90/95 or F90/95 — This refers to the full ANSI Fortran 90 language as defined
in the American National Standard Programming Language Fortran 90, ANSI X3.198-
1992 and International Standards Organization Programming Language Fortran, ISO/IEC
1539:1991(E). F95 is a slightly revised standard – a bit later than F90.

� FORTRAN90 Strict — Strict means that the code adheres to at least the FORTRAN77
standard and includes new features of FORTRAN90.

� FORTRAN90 Pure — Pure means that the code does not contain any of the features that
have been ruled obsolete by the FORTRAN90 standard.

� Verb-Predicate Rule — A method for naming subroutines consistently and logically based
on the functionality of the routine. Every subroutine performs some action (the “verb”) on
a particular item or data set (the “predicate”). The subroutine name is thus constructed
using the verb-predicate combination to arrive at a unique name for a particular
algorithm.

� ANSI – American National Standards Institute

ENERGYPLUS PROGRAMMING STANDARD APPENDIX B: DEVELOPMENT OF THE STANDARD

4/1/04 26

Appendix B: Development of the Standard

Why Standards?

Standard: An acknowledged measure of comparison for quantitative or
qualitative value; a criterion. 1

Without standards, software development is an uncontrolled activity or, often, an activity out
of control. With standards, the quality of software within the development group can
continuously improve to the detriment of no individual contribution. In addition, standards
may be able to help us meet various goals for the development (such as cost, timeliness, and
focus on the product).

At the July 1995, joint team meeting2, several goals for the project were outlined:

1) Take best of existing DOE-2/BLAST/(IBLAST) capabilities, applications, and

methods/structures. Combine with existing best of others.
2) Reuse existing code and structures where possible.
3) Short Time Frames (< 24 months)

During April 1996, the "Champaign Best of" group met and determined priorities for
development within, at least, their portion of the "Best of" development. Using a list3, the
following weightings were determined, in descending order of importance (Level 1 more
important than Level 2):

� Level 1: Maintainability, Robustness, Reliability, Testability,

Understandability(Readability)

� Level 2: Portability, Reusability

� Level 3: Speed, Size

Thus, we established a standard both for coders as well as for reviewers. When we code or
review, we will try to keep these elements in mind. Should a trade-off be needed, the
decision either at coding time or review time will fall to the priorities established.

These items are defined (for the most part) in Code Complete4 along with a table that shows
how focus on one may hinder another. The pertinent definitions are repeated here:

� Maintainability: The ease with which you can modify a software system to
change or add capabilities, improve performance, or correct defects.

� Robustness: The degree to which a system continues to function in the
presence of invalid inputs or stressful environmental conditions.

� Reliability: The ability of a system to perform its required function under stated
conditions whenever required -- having a long mean time between failures.

1 The American Heritage® Dictionary of the English Language, Third Edition copyright © 1992 by Houghton Mifflin Company.
Electronic version licensed from InfoSoft International, Inc. All rights reserved.
2 Meeting Notes, Dru Crawley, attachments to mail messages.
3 Debugging the Development Process, Steve Maguire, Microsoft Press, ©1993.
4 Code Complete: A Practical Handbook of Software Construction, Steve McConnell, Microsoft Press, ©1993, pp 557-560.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX B: DEVELOPMENT OF THE STANDARD

4/1/04 27

� Testability: The degree to which you can unit-test and system-test a system; the
degree to which you can verify that the system meets its requirements.

� Understandability: The ease with which you can comprehend a system at both the
system-organizational and detailed-statement levels. Understandability has to do
with the coherence of the system at a more general level than readability does.

� Portability: The ease with which you can modify a system to operate in an
environment different from that for which it was specifically designed.

� Reusability: The extent to which and the ease with which you can use parts of a
system in other system.

� Speed: Related to Efficiency: execution time.

� Size: Related to Efficiency: memory requirements.

Not on our original list but included in the reference:

• Efficiency: Minimal use of system resources, including memory and
execution time.

• Readability: The ease with which you can read and understand the source
code of a system, especially at the detailed-statement level.

• Accuracy: The degree to which a system, as built, is free from error,
especially with respect to quantitative outputs. Accuracy differs
from correctness; it is a determination of how well a system does
the job it is built for rather than whether it was built correctly.

At the same time, we should consider what our references put forth.5 “Standards shouldn’t
be imposed at all, if you can avoid them. Consider the alternatives to standards: flexible
guidelines, a collection of suggestions rather than guidelines, or a set of examples that
embody the best practices.”

What Standards?

Standards are being established for development work as well as for language coding. This
document will primarily speak to the standards and guidelines of language coding (currently
FORTRAN90). We are also establishing less formal (and more formal) techniques within the
groups: design and code reviews, design and code walk-throughs, automated version control
(both for source code and documents), and other practices that generally affect the quality of
software products.

Application of the Standard

How does one measure whether an item “meets” the standard? It could be said that:

One must measure objectively. Ideally, it would be automated either through the compiler used or the
use of an auxiliary program if it didn’t require too many resources to set-up.

As some examples of concepts that encourage good coding, Code Complete5 puts forth the
following techniques as being useful:

1. Assign two people to every part of the program.
2. Review every line of code.
3. Require code sign-offs.
4. Route good code examples for review.
5. Emphasize that code listings are public assets.

5 Code Complete: A Practical Handbook of Software Construction, Steve McConnell, Microsoft Press, ©1993, pp 528-530.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX B: DEVELOPMENT OF THE STANDARD

4/1/04 28

6. Reward good code.
7. An easy standard: Make the code readable!

This document will provide further information on ideas from various team members on
producing good, consistent code for the EnergyPlus project. However, it should be
remembered by all that the EnergyPlus project will rely heavily on the discipline and
discretion of the various team members to conform to the guidelines established in this
document as much as possible. Much of the information in this document will lean towards a
“guideline” rather than a “standard”. The intention is to keep the code as uniform as possible
without imposing too many rigid rules that in and of themselves become a hindrance to the
successful completion of the project.

Metrics

Metric: A standard of measurement.1

Metric is another way of saying “standard”. Sections under this topic will illustrate various
measures that might be applied to source code, documentation, user interface and other
elements of a system.

Referring to Code Complete6, “the term ‘metrics’ refers to any measurement related to
software development. Lines of code, number of defects, defects per...” and gives two solid
reasons to measure the software development process:

1) Any way of measuring the process is superior to not measuring it at all.
2) To argue against metrics is to argue that it is better not to know what is really happening

on your project.

Metrics are not an “absolute”; rather, they are methods for showing “abnormalities” that may
need to be looked at to preserve quality code. In many cases, we will rely on the code
reviewers subjective opinion on the understandability of the code. Listed below are some
example metrics that developers might want to use as guides when writing EnergyPlus code.
It is suggested that developers take some of the ideas from each of these and apply them to
their coding assignments.

Complexity Metric

A complexity metric can be used rather than specify a number of lines that must be contained
in a piece of source code. McCabe's technique for measuring complexity can probably be
automated and has been correlated to reliability and frequent errors.7 The metric is simple,
straightforward, and described in the following table.

6 Code Complete: A Practical Handbook of Software Construction, Steve McConnell, Microsoft Press, ©1993, pp 544-547.
7 Code Complete: A Practical Handbook of Software Construction, Steve McConnell, Microsoft Press, ©1993, pp 395-396.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX B: DEVELOPMENT OF THE STANDARD

4/1/04 29

Table 2. McCabe Complexity Measurement

Enumeration Technique
Start with 1 for the straight path through the routine.
Add 1 for each of the following keywords (or equivalents): if
while repeat for and or
Add 1 for each case in a case statement. If the case
statement does not have a default case, add 1 more.

Prescription
The routine is probably fine.
Start to think about ways to simplify the routine.
Break part of the routine into a second routine and call it from
the first routine.

The code developer will probably find that for most EnergyPlus processes the absolute
numbers presented in the second half of the previous table should be taken with some
reservation. Most likely, for most processes such low limits on complexity would result in an
inordinate number of unneeded subroutines. Again, this particular metric should be applied
with common sense.

Lines of Code per routine

This has been put forth as a possible metric and is mentioned in Code Complete. Using such
a metric might limit the number of lines of code per routine to say 100 or 200. While
programmers might be allowed to make exceptions, these reasons would have to be
defended during any code reviews.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX C: EVOLUTIONARY REENGINEERING

4/1/04 30

Appendix C: Evolutionary Reengineering

Evolutionary reengineering, or ER, might be defined as a process of slowly and selectively
introducing new structured code in with legacy code. This process is to start out at the lowest
level of module detail and slowly filter one “branch” up through the structure of the program
until the main drivers are accessed. By testing a single branch of the module tree in each of
the main sections of the code, it can be determined more quickly if the module structure that
is being proposing for each section is valid.

This strategy is in some respects the opposite of starting with a clean slate and then trying to
piece together the program. In effect, it moves incrementally from old unstructured legacy
code to new modular code by incorporating the new code with the old. The existing code
retains its capability to interface with the user input data, and is extended to generate
parameters needed by the new code modules. In this way, the new modules can be verified
without having to completely replace the entire functional capability of the old program with
new code before any verification can take place. As the process proceeds, the parameters
being supplied by old routines can be supplanted by those available from new routines and
new data structures. This makes the transition evolutionary, and permits a smooth transition
with a greater capability for verification testing. One main advantage of ER is that there will
always be a working version of EnergyPlus available. One slight disadvantage is that there
may be the need for temporary scaffolding code to transition from the mixed mode to fully
modular code.

The process is shown schematically in the following figure as a series of four stages. The
first stage is the starting point with legacy code and traditional input and output. The second
stage, which could consist of several substages, incorporates new structured code with the
legacy code. This new code receives all needed inputs from the legacy code, and produces
only developers’ verification output. This stage is considered complete when it includes the
fundamental initial modules, and has defined interfaces for new plug-in modules. In the third
stage, the new input data structure is included to supply input to the structured code modules,
which have been algorithmically verified. In the fourth stage, the new output data structure is
incorporated, and the transition is complete.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX C: EVOLUTIONARY REENGINEERING

4/1/04 31

Legacy Code

Traditional Input

Traditional Output

Legacy Code

New Structured
Modules

Stage 1 Stage 2

Verification
Output

IDS

New Structured
Modules

Stage 4

Legacy Code

New Structured
Modules

Verification
Output

New Input Data
Structure (IDS)

New Output Data
Structure (ODS)

Traditional Input

Traditional Output

Traditional Output

Traditional Input

Stage 3

Figure 1. The Evolutionary Reengineering Process.

ENERGYPLUS PROGRAMMING STANDARD APPENDIX D: ENERGYPLUS VARIABLE ABBREVIATIONS

4/1/04 32

Appendix D: EnergyPlus Variable Abbreviations

It is preferred that the full word be used in EnergyPlus variables, but this can understandably
lead to very long names. In these cases, the following abbreviations should be used.

Term Abbreviation
Absorptance Abs
Atmosphere Atm
Boiler Boil
Capacit-ance/-y Cap
Chiller Chill
Coefficient of Performance COP
Coefficient Coef
Coiling Coil CCoil
Compressor Compr
Condensor Cndsr
Conducti-on/-vity Cndct
Control Ctrl
Convection Conv
Converge Cnvrg
Cooling Cool
Delta Del
Density Dens
Design Des
Diffuse Dif
Direct Dir
Electric Elec
Emissivity Emis
Emittance Emit
Energy Enrgy
Entering Entr
Enthalpy Enthl
Environment Envrn
Equipment Equip
Evaporat-or/-ive Evap
Exhaust Exh
Exterior Ext
Factor Fac
Fraction Frac
Generator Gen
Ground Gnd
Heating Coil HCoil
Horizontal Hor
Humidity Hum
Illuminance Illum
Infiltration Infil
Inside/Inlet In
Interior Int

Term Abbreviation
Latitude Latd
Leaving Leav
Length Len
Longitude Long
Luminance Lum
Maximum Max
Minimum Min
Mixed Mix
Month Mon
Number Num
Outside/Outlet Out
Overhang Ovrhg
Pointer Pntr
Preheat Coil PCoil
Pressure Press
Psychrometric Psych
Radiation Rad
Reflectance Refl
Reheat Coil RCoil
Return Ret
Saturated/ion Satur
Schedule Sched
Setpoint Setpt
Simulation Sim
Specific Spec
Summation Sum
Supply Supp
Surface Surf
System Sys
Temperature Temp
Temporary Tmp
Throttl-e/-ing Throt
Total Tot
Transmittance Trans
Turbine Turb
Velocity Vel
Ventilation Vent
Vertical Vert
Visible Vis
Volume Vol
Window Win

	Introduction
	Reference Documents
	Coding Standard
	FORTRAN90/95
	FORTRAN90 Code
	F90/95 Language Features for Use in EnergyPlus
	FORTRAN90/95 Compilers

	Naming Conventions
	Subroutine Naming Convention
	Module and Source Code File Naming Convention
	Variable Naming Convention

	Program Variables
	Variable Declarations and Usage
	Units in EnergyPlus
	Variable Initializations

	Module Structure and Interaction
	Module Usage in EnergyPlus
	Driver Subroutines
	Environment Flags
	User Data Interface Subroutines (Get routines)
	Initialization Subroutine(s)
	Calculation Routines and Utility Subroutines and Functions
	Update Routine(s)
	Reporting Subroutine(s)
	USE Statements in EnergyPlus
	Example of the EnergyPlus Module Structure
	Generic Subroutines and Functions

	Programming Style
	Code Template
	Notes on the EnergyPlus Code Template
	Good Coding Practices
	Code Readability vs. Speed of Execution

	Code Documentation
	Source Code Comments
	Engineering Documentation

	Software Development Procedures
	EnergyPlus development: step by step

	Testing
	Appendix A: Definitions and Notation
	Appendix B: Development of the Standard
	Why Standards?
	What Standards?
	Application of the Standard
	Metrics
	Complexity Metric

	Appendix C: Evolutionary Reengineering
	Appendix D: EnergyPlus Variable Abbreviations
	Return to Enhancing Menu
	Return to Main Menu

